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ABSTRACT

The Complex Ambiguity Function (CAF) allows simultaneous estimates of the Time
Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA) for two
received signals. The Complex Ambiguity Function Geo-Mapping (CAFMAP) algorithm
then directly maps the CAF to geographic coordinates to provide a direct estimation of the
emitter’s position. The CAFMAP can only use short-duration CAFs, however, because the
collector motion changes the system geometry over time. In an attempt to mitigate this
shortfall and improve geolocation accuracy, the CAFMAP takes multiple CAF snapshots
and sums the amplitudes of each. Unfortunately, this method does not provide the expected
accuracy improvement, and a new method is sought.

This thesis reformulates the equations used in computing the CAF, in order to ac-
count for the collector’s motion, and uses the results to derive a new CAFMAP algorithm.
This new algorithm is implemented in MATLAB, and its results and characteristics
analyzed. The conclusions are as follows: the new algorithm functions as intended,
removes the accuracy limitations of the original method, and merits further investigation.
Immediate future work should focus on ways to reduce its computation time and modifying
the algorithm to account for 3-Dimensional reality, non-linear motion of collectors, and
motion of the emitter.
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Executive Summary

Knowing the precise geographical position of adversaries and their equipment is critical to
our ability to take action against them. Therefore, the accuracy of Department of Defense
(DOD) Signals Intelligence (SIGINT) systems is of the utmost importance. These systems
make use of a variety of methods to perform geolocation, each with their strengths and
weaknesses [1], [2], [3]. This thesis is an attempt to improve upon the accuracy of one of
these methods, called the Cross Ambiguity Function Geo-Mapping (CAFMAP) [4].

The CAFMAP method may be used when two spatially separate, moving collectors
gather independent copies of the same emitted Radio Frequency (RF) signal. The Com-
plex Ambiguity Function (CAF) of these two signals is then calculated, which generates
a surface in the Time Difference of Arrival (TDOA) and Frequency Difference of Ar-
rival (FDOA) domains. This surface peaks at the actual TDOA and FDOA values em-
bedded in the signals by the physical geometry of the collector-emitter system. In the
CAFMAP method, this surface is mapped to geographic coordinates and provides a three-
dimensional (3D) map, peaking at the estimated location of the RF emitter. As shown in
Figure 1, this method is effective, and is particularly good at locating multiple, co-channel
emitters in close proximity [4].

Figure 1. Results of Hartwell's CAFMAP algorithm.

The drawback to the CAFMAP method, however, is that it cannot be used with signals
collected over long intervals. This is due to the changing collector-emitter geometry over
time, which causes a smearing effect in the CAF. When mapped to geographic coordi-
nates, this smearing manifests itself as noise in the form of spurious peaks in the map.
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These spurius peaks increase the map’s variance and confuse the geolocation estimate. An
example of this is shown in Figure 2. As the signal lengths increase, the peaks become
larger and the noise floor smaller, but when the signals become longer than ∼ 220 samples,
the noise becomes quite noticeable.

This work reformulates the CAF equations used in the CAFMAP algorithm, such that
the collector-emitter geometry is updated with each successive sample of the collected sig-
nals. This allows for much longer signal collection and integration times without smearing,
which, in turn, improves the geolocation accuracy of the CAFMAP method.

The CAF is mathematically defined as

A(τ, f ) =
∫ T

0
s1(t)s∗2(t + τ)e− j2π f tdt, (1)

where signal collection starts at time t = 0, and ends at time t = T . Furthermore, when
applied specifically to geolocating a received signal:

s1(t) = analytic signal received at collector 1,

s2(t) = analytic signal received at collector 2,

τ = time difference, and

f = frequency offset. [5]

The magnitude of the CAF is then maximized when τ and f are equal to the TDOA and
FDOA values inherent in the two received signals. These TDOA and FDOA values are
defined as

τ =
|~r2|− |~r1|

c
and, (2)

f =
fc

c

[
~vc2 ·~r2

|~r2|
− ~vc1 ·~r1

|~r1|

]
. (3)

where fc is the transmission carrier frequency, c is the speed of light, and the other factors
are illustrated in Figure 3 [1], [2].

By allowing the~r and~v factors in (2) and (3) to be time varying, changing by the known
collector parameters, and subsituting the result back into (1), we arrive at a new version
of the CAF, that now accounts for the changing geometry over time. The result, when

xvi
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Figure 2. Hartwell CAFMAP results for varying signal lengths.
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converted to the digital domain for implementation, is shown in (4). The implementation
of this modified CAF equation in the CAFMAP method is

A(x,y) =

n0+ fsT−1

∑
n=n0

s1 [n]s∗2

[
n+ROUND

(
|~r2(nTs)|− |~r1(nTs)|

cTs

)]
e
− j2π

fcn
fsc

[
~vc2 ·~r2(nTs)
|~r2(nTs)| −

~vc1 ·~r1(nTs)
|~r1(nTs)|

]
, (4)

and is herein referred to as the Moss algorithm. In (4), the factor
(
|~r2(t)|−|~r1(t)|

cTs

)
must be

rounded to the nearest integer because it is in the digital domain, and corresponds to an
offset in the sample index. As such, fractional offsets are not allowed as they would result
in programming errors.

The results of the Moss algorithm, for a simple case, are shown in Figure 4. For com-
parison, the results of the original Hartwell algorithm, for an identical scenario, are shown
alongside. It is seen that the Moss algorithm is still able to geolocate the emitter. As
an additional benefit, it demonstrates a smoother, higher resolution map than the original
Hartwell algorithm. Further test cases show that the Moss algorithm is still fully capable of
detecting multiple co-channel emitters, and, although not conclusive, indicate that it does
yield higher accuracy for longer signal collection times.

Statistically conclusive results were not achievable at this time due to time constraints
and the high computational complexity involved in the current implementation of the Moss
algorithm. Full maps, with long signal lengths, would take approximately 40 days to com-
pute, and even the small and simple test cases conducted in this work required at least one
day each to complete. This made it unfeasible to gather valid statistical results, or to fully
investigate the long collection times that this algorithm was designed to use. So, although
all data does indicate that improvement was achieved, and that the new algorithm merits
further investigation, it does require more work before it can be made practically useful.

The key limitation of the Moss algorithm, as currently implemented, is the computation
time required to find a result. Therefore, the first improvement necessary is to make the
algorithm more efficient, such that the run-time is practical. With a reduction in run-time
it will be possible to determine statistical results and to fully characterize the algorithm.
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Some ideas on how to achieve this are:

1. Port the algorithm to a more efficient language (i.e. C or Fortran).
2. Utilize parallel processing [6].
3. Implement an adaptive resolution regime.
4. Investigate block updates, vice updating geometry every sample.

Once this is accomplished, the reformulated equations should be re-examined. The equa-
tions formulated in this work assumed a very basic, linear geometry, and a stationary emit-
ter. These assumptions were made for the sake of mathematical simplicity and clarity
during proof of concept; however, they are generally not valid in real-world applications.
Therefore, the model will need some modification to more truly reflect reality. Some key
modifications required are:

1. Expand the model to three dimensions.
2. Change the equations of motion from linear to elliptical to account for orbital motion.
3. Allow for non-zero emitter velocities.

These modifications should not be difficult to accomplish, but will make the mathematical
model significantly more complex.

In conclusion, it is shown that the reformulated equations for TDOA and FDOA are
accurate, and can be used in a modified CAFMAP algorithm to account for the motion of
the collectors over time. The resulting Moss algorithm is able to geolocate RF emitters
with accuracy similar to that of the original Hartwell algorithm for shorter collection times,
and apparently with greater accuracy for long collection times. The improvement comes,
however, with the cost of high computational complexity. This is significant enough that it
must be mitigated before the new algorithm can be practically implemented, but the work
required is merited. Additionally, the approach used here, of modifying the TDOA and
FDOA equations to account for collector motion, should be generally applicable to many
other methods of geolocation that estimate TDOA and FDOA as a fundamental step. This
could lead to much broader use of these results once the computational issues have been
solved, and improve the geolocation accuracy of multiple methods in common use today.
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Moss algorithm with 214 samples. Hartwell algorithm with 214 samples.
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CHAPTER 1:
Introduction

1.1 Background
In today’s world of high-tech warfare, we have developed the ability to deploy virtually
any type of ordnance quickly and accurately to any location on Earth. We can do this from
a multitude of different platforms, which may be located safely many miles away and far
beyond the reach of retaliation. These weapons have become so accurate that, with caution,
they can be used in the midst of civilian populations to remove threats with minimal risk
of collateral damage. What limits our ability to neutralize these threats is, quite often,
insufficient knowledge of locations in order to strike.

Additionally, most conflicts today are asymmetric. We are often confronting adversaries
without official, overt military forces and without the large-scale resources of a nation state.
These covert groups substitute for their lack of resources by moving swiftly and secretly
behind the mask of civilian populations and have repeatedly proven themselves capable of
causing great harm to our nation and world peace. While our forces are more than capable
of dealing with these people, they can only do so if they know who and where they are.

These facts indicate that one of the most crucial elements of modern warfare is precisely
knowing the location of threats in real-time, or very close to it. Many tools must be used
in collaboration to achieve this knowledge, one of which is Signals Intelligence (SIGINT).
SIGINT methods involve collecting the Radio Frequency (RF) signals emitted by our ad-
versary’s own use of technology to gather information on their location and activities. Of
particular importance to this thesis is the method of using satellites in orbit to collect emit-
ted RF signals and to determine their location on the surface of the Earth.

There are many methods and algorithms for achieving this, most of which use a pair of
satellites (collectors) to receive the signal and then compute a Time Difference of Arrival
(TDOA) and Frequency Difference of Arrival (FDOA) between them [1], [2], [3]. These
parameters can then be used to determine the location of the emitter. This is essentially the
reverse of the process used by GPS receivers on the Earth to estimate one’s position and
velocity.

One of these methods was proposed by Al Buczek [4] of the Naval Research Labora-
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tory (NRL) in the early 1990s and theoretically developed and tested in a 2005 master’s
thesis by Hartwell [5] at the Naval Postgraduate School (NPS). In this method, called the
Cross Ambiguity Function Geo-Mapping (CAFMAP) method by Hartwell, the Complex
Ambiguity Function (CAF) of the two signals received by a pair of collectors is calculated
and then mapped to xy coordinates on the Earth’s surface. The magnitude of the CAF forms
a mathematical surface that peaks at the correct TDOA and FDOA values embedded in the
signals. When this is mapped to the Earth’s surface, the result is a function of position that
peaks at the geographical coordinates of the emitter, as demonstrated in Figure 5.

The CAFMAP method was successfully demonstrated by Hartwell [5], but it suffered
from a key weakness— its inability to use long duration signals. Attempts to do so resulted
in a smearing of the CAF due to a change in the collector-emitter geometry over the col-
lection time. This limits the best possible accuracy of Hartwell’s method as the integration
time is a fundamental factor in the precision of geolocating signals [6]. Hartwell was able
to mitigate this deficiency, somewhat, by collecting multiple, short snapshots of the RF
signals at spaced-out intervals, and then non-coherently summing the magnitudes of the
resulting CAFs. This reduced the variance in the peaks of the resulting map and provided
a better position estimate of the emitter, but it was still not an ideal solution. This thesis
attempts to fundamentally correct this deficiency by modifying the CAF algorithm, such
that arbitrarily long collection times are made possible without smearing the results. This
correction should yield a version of the CAFMAP method where the estimation error can
be made as small as desired by simply increasing the collection duration. The trade-off for

Figure 5. Results of Hartwell's CAFMAP algorithm.
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this advantage being increased computational complexity and memory requirements.

1.2 Objective
The primary objective of this thesis is to derive a mathematical model of the CAF that
accounts for the motion of the collectors and emitters in order to prevent the smearing of the
CAF surface over long collection times. This will allow the CAFMAP method to be used
with increased integration intervals, which, in turn will reduce the variance of the TDOA
and FDOA peaks in the resulting map, thus providing a more accurate geolocation result.
This work is focused on extending the capabilities of the CAFMAP, but the principles
should generally apply to any geolocation technique utilizing the CAF to determine TDOA
and FDOA values.

Upon successfully deriving a mathematical model, this study implements it in MATLAB
to validate and characterize the results.

1.3 Related Work
Many papers, thesis and dissertations have been written on the topic of CAF processing and
geolocating RF signals. The most directly relevant work to this thesis is that of Hartwell,
where he developed and demonstrated the basic CAFMAP algorithm [5]. This thesis orig-
inated as an attempt to extend and improve Hartwell’s work.

The fundamental concepts and algorithms employed in geolocation are discussed by
Loomis [1], Price [2], and Groves [3]. These fundamentals have been in practical use for
several decades and still form the foundations of SIGINT geolocation. The CAF is also
a critical concept in this thesis and its definition, uses and methods of computation are
developed in [6], [7], [8], and [9]. Skolnik also provides some useful insight into the uses
of the CAF in RADAR [10], where the function found its original use.

Johnson’s Naval Postgraduate School thesis [11] is also of great value. Johnson cre-
ated and tested the signal generating functions used in this work and provided a practical
implementation of using the CAF to perform geolocation.

3



1.4 Thesis Organization
This thesis is organized into five chapters. Chapter 2 gives an overview of the CAF and
a demonstration of how it can be used to estimate TDOA and FDOA parameters simul-
taneously. It also introduces the basic factors affecting the accuracy of the CAF. Chap-
ter 3 develops the mathematical model for the new CAFMAP algorithm and discusses its
implementation in MATLAB. Chapter 4 presents results and compares them to those of
Hartwell’s original method. Chapter 5 concludes this thesis by presenting some ideas for
future work and ways that could make this new algorithm more useful in a practical appli-
cation.

4



CHAPTER 2:
Overview of the CAF

This study is focused on extending the capabilities of the CAF. Thus, the first step is
to arrive at a good understanding of what a CAF is and how it is used in the field of
geolocation. In essence the CAF is a correlation function that takes a time and frequency
offset as its independent variables and peaks when the values of those variables match the
inherent offsets embedded in a received signal. It has found widespread use in the fields
of radar detection and geolocation because of its ability to simultaneously estimate both
TDOA and FDOA values [1], [6], [7], [9], [10], [11].

2.1 Definition
There are multiple definitions of the CAF but the most common, and the one that will be
used in this text, is that given by Stein [6] as

A(τ, f ) =
∫ T

0
s1(t)s∗2(t + τ)e− j2π f tdt. (2.1)

The integration limit, T , is the length of time over which the signals are collected. Further-
more, when applied specifically to geolocating a received signal:

s1(t) = analytic signal received at collector 1,

s2(t) = analytic signal received at collector 2,

τ = time difference, and

f = frequency offset.

5



2.2 Simple Example
To understand how this works we will use a simple signal, rect(t), as an example. This
signal is shown in Figure 6 and is defined as:

rect(t) =

1, if − 1
2 ≤ t ≤ 1

2

0, Otherwise.
(2.2)

In a geolocation problem, a signal is emitted by a transmitter. This signal is then detected by
two separate collectors with different positions and/or velocities. These received signals are
s1(t) and s2(t). Both received signals are the original rect(t) signal that was transmitted,
but they will have slightly different times of arrival and frequencies in addition to some
added noise. The times of arrival are different because the two collectors are in different
positions, therefore the path length from the emitter to each collector is different. The
difference in path length causes a difference in time of arrival. Similarly, the collectors will
typically have different velocity vectors. The relative velocity between each collector and
the emitter will cause a Doppler shift, but since the relative velocity vectors are not equal,
the amount of Doppler shift will not be either. This leads to a difference in frequency
between the two received signals. The following example shows how these offsets are
determined using the CAF. For this example, the following terms will be used:

τ = possible time difference parameters,

f = possible frequency offset parameters,

∆t = actual time difference between signals, and

∆ f = actual frequency difference between signals.

The objective is to calculate the CAF, which is defined in (2.1). This definition follows
that given by Stein [6], and is used in this work, but the function can also be described in
a more general form, with infinite bounds of integration, such as the definition found in
Ramirez et al. [9]. The two definitions are equivalent, in practice, as the collected signals
are of finite length, starting at t = 0 when the collection starts, and ending at t = T when the
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rect(t)

t
-1/2 1/2

1

Figure 6. rect(t) Signal.

collection ends. In practical applications, the Stein definition makes more intuitive sense,
and is the definition we use; but in this example, we will revert to the infinite bounds for
mathematical convenience. Understand that they are equivalent in practice. Thus, we let

A(τ, f ) =
∫

∞

−∞

s1(t)s∗2(t + τ)e− j2π f tdt, (2.3)

where

s1(t) = rect(t)e j2π fct and (2.4)

s2(t) = rect(t−∆t)e j2π( fc−∆ f )t . (2.5)

For simplicity, the problem will be broken down into segments. Let,

m(t) = s1(t)s∗2(t + τ), (2.6)

which is known as the mixing function, and yields

m(t) = s1(t)s∗2(t + τ) (2.7)

= rect(t)e j2π fctrect(t−∆t + τ)e− j2π( fc−∆ f )(t+τ) (2.8)

= rect(t)rect(t−∆t + τ)e− j2π( fcτ−∆ f t−∆ f τ). (2.9)

The mixing function is then combined with the exponential term of the CAF, taking the
frequency offset into account, yielding

7



m(t)e− j2π f t = rect(t)rect(t−∆t + τ)e− j2π( fcτ−∆ f t−∆ f τ)e− j2π f t (2.10)

= rect(t)rect(t−∆t + τ)e− j2π( fcτ−∆ f t−∆ f τ+ f t). (2.11)

The integral is then calculated yielding

A(τ, f ) =
∫

∞

−∞

rect(t)rect(t−∆t + τ)e− j2π( fcτ−∆ f t−∆ f τ+ f t)dt (2.12)

= e− j2π( fc−∆ f )τ
∫

∞

−∞

rect(t)rect(t− (∆t− τ))e− j2π( f−∆ f )tdt. (2.13)

In order to develop an understanding of the CAF it is useful to look at the parts of
this integral, rather than just finding the analytic solution. To see the results of the above
integration we first neglect the frequency shift and just examine the Fourier transform of
the two rect() functions.

If |∆t− τ| ≥ 1 then,

rect(t)rect(t− (∆t− τ)) = 0 (2.14)

→ A(τ, f ) = 0. (2.15)

This is illustrated in Figure 7. If |∆t − τ| ≥ 1 then the two rect() functions have zero
overlap and their product is zero, making the CAF equal zero.

rect(t)

t
-1/2 1/2

1
rect(t-1)

Figure 7. rect(t)rect(t−1).
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Otherwise, if |∆t− τ|= 0 then,

rect(t)rect((t− (∆t− τ)) = rect2(t) (2.16)

= rect(t), (2.17)

and since ∫
∞

∞

rect(t)e− j2π( f−∆ f )tdt = sinc( f −∆ f ) (2.18)

A(τ = ∆t, f ) = e− j2π( fc−∆ f )τsinc( f −∆ f ). (2.19)

The first factor is a complex phasor, meaning that it will change the phase of the result, but
the magnitude will remain unity. The second factor is the well-known sinc() function, and
its magnitude will equal one if | f −∆ f |= 0, and will oscillate with decreasing magnitude
otherwise. From this, it is seen that |A(τ, f )| will always be maximized when both τ = ∆t

and f = ∆ f .

The final case is where 0 < |∆t − τ| < 1. As shown in Figure 8, the mixing function
m(t) = rect(t)rect(t− (∆t− τ)) becomes the shifted and scaled rect(t) function

m(t) = rect

(
t− ∆t−τ

2
1−|∆t− τ|

)
. (2.20)

This gives a CAF equation of

A(0 < |∆t− τ|< 1, f ) = e− j2π( fc−∆ f )τ
∫

∞

∞

rect

(
t− ∆t−τ

2
1−|∆t− τ|

)
e− j2π( f−∆ f )tdt. (2.21)

It can be seen that the integral in (2.21) is just the Fourier Transform (FT) of (2.20), from
which we can make use of the FT shift and scaling properties. Doing so yields

rect

(
t− ∆t−τ

2
1−|∆t− τ|

)
⇔ e− j2π(∆t−τ

2 )( f−∆ f )|1−|∆t− τ||sinc{[1−|∆t− τ|] ( f −∆ f )}

(2.22)
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rect(t)

t
-1/2 1/2

1
rect(t-(Δt-τ))

Δt-τ Δt-τ+1/2 Δt-τ-1/2 

t

1/2

1 rect(t)rect(t-(Δt-τ))

Δt-τ-1/2 

(Δt-τ)/2

Figure 8. rect(t)rect(t− (∆t− τ)).

⇒ A(0 < |∆t− τ|< 1, f ) =

e− j2π( fc−∆ f )τe− j2π(∆t−τ

2 )( f−∆ f )|1−|∆t− τ||sinc{[1−|∆t− τ|] ( f −∆ f )} . (2.23)

Importantly, the boundaries of (2.23) agree with the previous cases. When |∆t− τ|= 0,
then the term [1−|∆t− τ|] equals 1, and the sinc term becomes sinc( f −∆ f ). This is
maximized when | f −∆ f | = 0. When |∆t− τ| = 1, then [1−|∆t− τ|] = 0 and forces the
entire function to zero. In between these boundaries, it can be seen that as |∆t−τ| increases,
the coefficient term [1−|∆t− τ|] becomes smaller, which reduces the magnitude of the
CAF. Therefore, the CAF will have a higher magnitude when the difference between τ

and ∆t is smallest. At the same time, the sinc() function is maximized when the difference
between f and ∆ f is smallest and decreases as the difference is increased. Additionally,
both exponential factors will cause oscillations, but their magnitude is 1 when |∆t− τ|= 0
and | f −∆ f |= 0 and can never be greater for any other values.

So it can be seen in this example that when the CAF surface is plotted with respect to τ

and f , as shown in Figure 9, there will be a peak at the location corresponding to the actual
signal offsets, ∆t and ∆ f . This demonstrates that by numerically calculating the CAF of a
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signal, received by two different collectors, we can arrive at a good estimate of the values
for both the TDOA and the FDOA. There will, however, be noise is this estimate, mostly
due to noise inherent in the signals themselves. Therefore, one of our goals when utilizing
the CAF for geolocation is to minimize the variance in the TDOA and FDOA estimates,
in order to maximize accuracy. Of note in Figure 9 is that the variance in the FDOA is
practically zero. This is due to the infinite bandwidth of the rect(t) signals used in this
example and this relationship will be further discussed in the next section.

2.3 CAF Performance
Along with his work on how to compute CAF surfaces, Stein also derived the theoretical
accuracies of both TDOA and FDOA estimates. These are

σT DOA =
1
β

1√
BT γ

(2.24)

σFDOA =
1
Te

1√
BT γ

, (2.25)

with the terms defined as:

T = signal collection time, i.e. length of s1(t) and s2(t),

B = noise bandwidth at receiver input, assumed the same for both collectors,

β = RMS bandwidth of the received signal,

Te = RMS integration time, and

γ = effective input SNR.

Furthermore,

β = 2π

[∫
∞

−∞
f 2Ws( f )d f∫

∞

−∞
Ws( f )d f

] 1
2

(2.26)

where Ws( f ) = signal power density spectrum,
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Figure 9. CAF of the example rect(t) signals, with o�sets of 10 Hz in frequency, and 0.1 seconds
in time.

Te = 2π

[∫
∞

−∞
t2|u(t)|2dt∫

∞

−∞
|u(t)|2dt

] 1
2

, (2.27)

where u(t) is the waveform that was originally transmitted, and

1
γ
=

1
2

[
1
γ1

+
1
γ2

+
1

γ1γ2

]
, (2.28)

where γ1 and γ2 are the signal to noise ratio’s in the signal received by each collector [6].

It is clear that in order to minimize the variance in both TDOA and FDOA dimensions,
we need to maximize the five terms in (2.24) and (2.25). B, β and γ are all dependent on the
signal that is transmitted and, therefore, out of the collectors’ control. That leaves T and
Te, which are both measures of the signal collection time. Thus, if we want to reduce the
variance in the CAF peaks, and thereby improve the geolocation estimate, it is necessary to
increase the signal collection time as much as possible.

This chapter has developed an understanding of the CAF and the key factors affecting its
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accuracy. The next chapter will introduce Hartwell’s CAFMAP method of geolocation, and
explain its inherent limitations regarding signal collection time. It will then explore how
we might reformulate the CAF, such that the inherent motion of the collectors is accounted
for. In principle, this will allow us to collect signals for as long as necessary to achieve
our desired level of accuracy. In reality there will be other limiting factors, such as latency,
memory, and processing capability, but the physical limitations of the CAFMAP method
will have been overcome.
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CHAPTER 3:
A New CAFMAP Algorithm

Hartwell demonstrated a novel method of using the CAF for geolocation in his master’s
thesis which he called the CAFMAP [5]. Traditional methods use the CAF to determine the
TDOA and FDOA values, and then utilize a follow-on method, such as Newton-Raphson, to
invert the TDOA and FDOA equations in order to arrive at geographic coordinates [1], [2].
The CAFMAP method, instead, maps the CAF directly to geographic coordinates. This
results in a surface, or image, that peaks at the most likely location of the RF emitter.

Hartwell’s approach for doing this was to create a grid map of x and y geographic coor-
dinates and calculate what the expected TDOA and FDOA values would be if the emitter
were located in each of those grid positions. He then calculated the actual CAF surface
from the collected signals and, by cross-referencing the TDOA and FDOA values of this
surface and the grid points, was able to map the CAF into x and y coordinates. The result
was the CAF surface on an xy-coordinate, geographic plane. Hartwell’s results were quite
promising, particularly when dealing with multiple co-channel emitters as shown in Figure
10.

Unfortunately, it also relied upon constant signal parameters to be able to perform the
cross-referencing and also to be able to calculate the CAF efficiently using Fast Fourier
Transform (FFT) techniques. The implications of this restriction are shown in Figure 11.
As the signal lengths are increased the CAF peaks become greater in magnitude and drop
off more sharply. This means that the geolocation accuracy will be improved, as expected,

Figure 10. Results of Hartwell's CAFMAP algorithm.
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for longer collection and integration times. However, when the signal lengths reach ap-
proximately 220 samples long we can begin to see more noise in the form of spurious
peaks away from the true emitter location. A signal length of 220 samples corresponds to
a collection time of approximately 10.5 seconds for the typical sampling rate of 100 kHz
used in this example. This noise arises due to the fact that the collector-emitter geometry
has changed over the length of the signal collection interval, and it results in geolocation
accuracy becoming worse with longer collection times, rather than better.

Hartwell recognized this limitation and made an effort to mitigate it. He did this by
breaking the signal collection up into short duration snapshots, with a time gap between
each. He then calculated the CAFMAP for each of these snapshots and non-coherently
summed their magnitudes. The idea of this being that each snapshot would have its own
noise, but the same peaks where emitters were located. Thus, by summing the snapshot
magnitudes, the surface energy at the true emitter locations would keep increasing at a
greater rate than the side lobes. This mitigation technique was partially successful. It al-
lowed for longer effective signal collections, and yielded correspondingly narrower peaks,
but it also tended to create its own noise. Much of this is due to the non-coherent summing
used by Hartwell. With no phase information there is no destructive interference, so the
noise floor is always increasing. Eventually this makes it difficult to distinguish peaks from
the noise. Additionally there is a limit to how narrow the peaks can be made with this
technique. Since each CAF snapshot must be from a short duration signal, there will be a
relatively greater variance in the peaks being summed. Summing them will cause the center
of the peak to rise faster than the surrounding surface, but it will not remove the energy of
the individual wide peaks [5].

The goal of this thesis is to completely remove this physical limitation. This is accom-
plished by modifying the CAF equations used in the CAFMAP method, such that system
geometry is updated throughout the signal collection period. In principle, this allows us to
collect signals for as long as necessary to achieve our desired level of accuracy. In reality
there will be other limiting factors, such as latency, memory, and processing capability, but
the physical limitations of the CAFMAP method will have been overcome.

Initially, a variety of modifications to Hartwell’s established algorithm were attempted
to achieve the desired result. After some effort, however, it was realized that the basic
architecture of Hartwell’s algorithm was incompatible with the objective. Therefore, the
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basic formulation of the problem was revisited as follows.

3.1 Developing the Basic Model
The critical aspect of the problem is the geometry between the collectors and the emitter. A
generic example geometry is shown in Figure 12, which will be used to derive a new model.
A three-dimensional (3D) geometry is used for generality, however, certain restrictions
will be enacted during this development in order to maintain mathematical simplicity. The
standard CAF is a function of TDOA and FDOA, but our objective requires that it be made
into a function of position and time, or, x, y, z and t. Accomplishing this is the first step in
developing the new model.
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N = 214 N = 216

N = 218 N = 220

N = 221

Figure 11. Hartwell CAFMAP results for varying signal lengths.
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3.1.1 TDOA
For simplicity, TDOA and FDOA will be transformed separately, starting with TDOA.
TDOA is simply the difference in time that is required for the signal to travel from the
emitter to the two collectors. That is,

τ =
|~r2|− |~r1|

c
(3.1)

where c = speed of light ≈ 2.998×108m/s [1], [2].

Or, in the terms of Figure 12 and using the velocity of the collectors and emitter, which
are allowed to be time-variant,

τ(t) =

√∣∣∣~Pe(t)− ~Pc2(t)
∣∣∣2−√∣∣∣~Pe(t)− ~Pc1(t)

∣∣∣2
c

(3.2)

=

√∣∣∣(~Pe +~ve · t
)
−
(
~Pc2 + ~vc2 · t

)∣∣∣2−√∣∣∣(~Pe +~ve · t
)
−
(
~Pc1 + ~vc1 · t

)∣∣∣2
c

. (3.3)

For the remainder of this work it is assumed that ~ve = 0, i.e. only stationary emitters are
considered. Examining the effects of this assumption will be left as a future work. With
this assumption (3.2) simplifies back to

τ(t) =
|~r2(t)|− |~r1(t)|

c
, (3.4)

where
~r1(t) = ~Pe−

(
~Pc1 + ~vc1 · t

)
and (3.5)

~r2(t) = ~Pe−
(
~Pc2 + ~vc1 · t

)
. (3.6)

This successfully converts the TDOA into a function of position and time. The velocities
of the collectors must be known, but in general they are and this is not a problem.
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Figure 12. Example geolocation geometry.

3.1.2 FDOA
As stated by Loomis [1], the Doppler shift in signal frequency, ∆φ , due to the motion of a
collector is given by

∆φ =
fc

c
~v ·~r
|~r|

, (3.7)

where fc is the carrier frequency of the emitted signal, and c is the speed of light. In the
terms of Figure 12, this means that the frequency shifts for each collected signal are

∆φ1 =
fc1

c
~vc1 ·~r1

|~r1|
, and (3.8)

∆φ2 =
fc2

c
~vc2 ·~r2

|~r2|
. (3.9)

20



Since the two received signals are simply different copies of the same original signal, fc1 =

fc2 = fc. Thus, the frequencies of the signals received by the two collectors are

φ1 = fc +∆φ1 = fc +
fc

c
~vc1 ·~r1

|~r1|
and (3.10)

φ2 = fc +∆φ2 = fc +
fc

c
~vc2 ·~r2

|~r2|
. (3.11)

The FDOA is simply the difference in these two received signal frequencies, and therefore

f = φ2−φ1 =
fc

c

[
~vc2 ·~r2

|~r2|
− ~vc1 ·~r1

|~r1|

]
. (3.12)

When ~r1 and ~r2 are allowed to be time-variant, and are defined by (3.5) and (3.6), (3.12)
becomes

f =
fc

c

[
~vc2 ·~r2(t)
|~r2(t)|

− ~vc1 ·~r1(t)
|~r1(t)|

]
. (3.13)

Thus we have accomplished our goal, as (3.13) now provides FDOA in terms of x, y, z and
t.

3.1.3 Modified CAF
With (3.2) and (3.13) for TDOA and FDOA, respectively, it is now possible to determine a
form of the CAF with position as its independent variables. Starting from the general form
of the CAF as given in (2.1),

A(τ, f ) =
∫ T

0
s1(t)s∗2(t + τ)e− j2π f tdt, (3.14)

where the signals s1(t) and s2(t) are of length T , thus bounding the integral.

To be practically implemented (3.14) must be converted to a discrete form to allow for
digital signal analysis and computation. With fs being the sampling frequency of the col-
lected signals, and Ts =

1/ fs the sample duration, let

t = nTs (3.15)
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and
f =

k fs

N
, (3.16)

where N is the number of collected samples for each signal, such that T = NTs, and k is the
digital FDOA. These substitutions lead to the discrete CAF,

A(τ,k) =
N−1

∑
n=0

s1 [n]s∗2

[
n+

τ

Ts

]
e− j2π

kn
N (3.17)

Substituting in (3.2) and (3.13), letting n0 equal the first sample of the collected signals,
and noting that N = fsT , yields the modified CAF function,

A(x,y) =

n0+ fsT−1

∑
n=n0

s1 [n]s∗2

[
n+ROUND

(
|~r2(nTs)|− |~r1(nTs)|

cTs

)]
e
− j2π

fcn
fsc

[
~vc2 ·~r2(nTs)
|~r2(nTs)| −

~vc1 ·~r1(nTs)
|~r1(nTs)|

]
.

(3.18)

In (3.18) the term
(
|~r2(t)|−|~r1(t)|

cTs

)
must be rounded to the nearest integer because it is in

the digital domain and corresponds to an offset in the sample index, meaning that fractional
offsets are not allowed.

3.2 Mapping Implementation
Equation (3.18) is implemented in two functions, LongIntCafMap.m and caf_map.m,
which can be found in the Appendix. These functions will collectively be referred to as
the Moss algorithm for the remainder of this work. The LongIntCafMap.m function de-
fines the geometry of the collectors and emitter, the parameters of the signal, and the length
and number of snapshots that will be collected. It then generates the "received" signals
for each collector using the sig_gen.m function, written by Johnson in his thesis on CAF
processing [11]. Although, in principle, the Moss algorithm is able to collect one long sig-
nal, this implementation continues to break it up into smaller snapshots. This is done for
two reasons. First, we want to compare the Hartwell and Moss algorithms to determine any
improvement made. Thus, we want to keep as many parameters as possible the same. If the
Moss algorithm shows improvement using snapshots, then we can be reasonably confident
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that it would show even greater improvement with just one, long collection. Second, the
trade-off for updating the system geometry every sample is very high computational com-
plexity. This means that one long collection would take prohibitively long to simulate, and
continuing to use the snapshots cuts down on this processing time greatly. After generating
the "received" snapshots, the LongIntCafMap.m function passes them to the caf_map.m
function.

The caf_map.m function accepts the collected signals and parameters for the size and
resolution of the map. It then loops through every x and y position in the grid and calcu-
lates the CAF value at that position using (3.18). Unfortunately, this must be done in a
loop rather than utilizing the FFT or cross-correlation methods because the parameters are
changing in time, meaning that they must be updated every sample. As a result, this algo-
rithm is unable to take advantage of the computational efficiency of those algorithms and
must utilize brute force, as it were, by looping through every signal sample and computing
each element individually. This causes a very high level of computational complexity, and
thus, the algorithm is very slow. This is further discussed in the succeeding chapters. After
calculating the CAF for each snapshot, caf_map.m returns it to LongIntCafMap.m, which
coherently sums the values of all snapshots to yield the final CAFMAP result.

3.3 Key Differences
The next chapter will discuss the Moss algorithm in more detail and compare its results
to those of the Hartwell algorithm. However, it is important to note the key differences
between the two before proceeding.

1. Hartwell algorithm:
(a) Snapshots are required.
(b) Snapshots are summed non-coherently.
(c) The CAF surface is binned into defined grid locations.
(d) The FFT is used for computing CAFs; very efficient.

2. Moss algorithm:
(a) Snapshots are not required; single, long duration samples may be used instead.
(b) When snapshots are used, they are coherently summed to maintain phase infor-

mation.
(c) The CAF surface is computed directly in the xy domain.
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(d) Each element of the CAF must be computed individually in loops; high com-
putational cost.

In short, the Moss algorithm gains accuracy and resolution at the cost of computational
complexity. The implications of this trade-off are fully examined in the next chapter.
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CHAPTER 4:
Results

The initial results show that the Moss algorithm does indeed locate RF emitters and main-
tains the CAFMAP’s ability to simultaneously detect co-channel emitters as shown in Fig-
ure 13. This justifies the direct mapping solution used and opens the door for further work
on the algorithm.

Having verified that the algorithm works as intended, the first task is to characterize it
and check its performance compared to the original Hartwell algorithm. The computational
complexity of the Moss algorithm turns out to have a large bearing on the ability to char-
acterize the accuracy, so it is discussed first. This is followed by a side-by-side comparison
of the results, obtained by using the two algorithms and a discussion on their differences.

4.1 Computational Complexity
Listing 4.1 shows the heart of the Moss algorithm as currently implemented in MATLAB.
In order to analyze the computational complexity of the algorithm the methodology chosen
is as follows. We assume that each operation requires one unit of time to perform, mean-
ing that addition, subtraction, multiplication, division, assignments, etc. all take the same
amount of time to perform. How true this assumption is will vary depending on the proces-
sor being used, but for an initial approximation, it is sufficient and simplifies the analysis.
Additionally, the more complex operations, such as norms and vector multiplies, are bro-
ken up into their component basic operations. For example, the norm of a three element
vector is norm(~x) =

√
x2

1 + x2
2 + x2

3, so it is counted as three multiply, two add, and one root
operations.

This done, the number of operations performed in each loop is counted and the result
multiplied by the number of times that the loop is executed. The results of this are shown
in Table 1. When the number of all operations are summed we arrive at # Ops = 1+
NxNy(4+78N), where Nx and Ny are the number of gridpoints in the xy grid, and N is the
number of collected samples for the signals. As an example, if we assume that the area
of interest is an area 50 km wide and 20 km deep at a resolution of 10 meters, and the
collection time is approximately 40 seconds at 100 kHz sampling rate, then the parameters
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Figure 13. Moss algorithm with co-channel emitters at (10000,10000) and (6000,8000).

would be:

Nx =5000,

Ny =2000 and

N =222.

The total number of operations to be performed is 1+NxNy(4+78N) = 3.27×1015 and if
it is assumed that one operation requires one nanosecond to perform then the total run time
will be (3.27× 1015)(1× 10−9) = 3.27× 106 seconds, or 37.86 days. This is obviously
impractical, and time was not available to experimentally confirm this run-time. However,
experiments were performed with either lower resolutions or shorter sample lengths and
their run-times in MATLAB are shown in Figures 14 and 15. These figures show the
run-time, in seconds, of each function called during the simulation. LongIntCafMap is the
main function, and its total time is the total time taken for the entire simulation. The results,
shown in these figures, confirm the complexity of the Moss algorithm and demonstrate its
impracticality as currently implemented.
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Listing 4.1. Moss algorithm in MATLAB code.

for ii = 1:Nx
for jj = 1:Ny

m = zeros(1,N);
exponent = zeros(1,N);
Pe = [indexX(ii),indexY(jj),0];
S2_conj = conj(S2);
for nn = 1:length(S2)

r1 = Pe − (Pc1+Vc1.*nn*Ts);
r2 = Pe − (Pc2+Vc2.*nn*Ts);
TauValue(nn) = round((norm(r2)−norm(r1))/c);
if TauValue(nn) >= 0 && (nn+TauValue(nn)) < N

m(nn) = S1(nn) * S2_conj(nn+TauValue(nn));
elseif (nn−TauValue(nn)) < N

m(nn) = S1(nn−TauValue(nn)) * S2_conj(nn);
end
FDOA(nn) = Fo/c*(Vc2*r2'/norm(r2)−Vc1*r1'/norm(r1));
exponent(nn) = exp(−1j*2*pi*FDOA(nn)/Fs*(nn−1));

end
product = m.*exponent;
CAF(ii,jj) = sum(product);

end
end

Table 1. Number of operations performed.

Operation # of times performed
Assign NxNy(10N +3)

Add/Sub NxNy29N
Multiply NxNy(26N +N +1)
Divide NxNy5N

Sqrt NxNy4N
Compare NxNy2N
Exponent NxNyN

Nx = # of X grid positions mapped.
Ny = # of Y grid positions mapped.

N = # of signal samples taken.
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Figure 14. N = 214, dm = 100 m, full map.

Figure 15. N = 222, dm = 100 m, small map.
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4.2 Moss Algorithm versus Hartwell Algorithm
As discussed in the previous section, a full characterization of the Moss algorithm was
unfeasible. In lieu of this, a selection of test cases were run with both the Moss and the
Hartwell algorithms so that a rough comparison might be made and the general charac-
teristics of the Moss algorithm determined. These tests were conducted with a lead-trail
collector geometry, with the geometry parameters defined in Table 2. The transmitted sig-
nal is Binary Phase Shift Keying (BPSK) modulated with parameters as shown in Table 3.
All tests are performed using both the re-created Hartwell algorithm and the Moss algo-
rithm, with identical parameters, such that a direct comparison can be made.

Table 2. Test geometry parameters.

Parameter Value
Collector 1 Position (Pc1) [0, 0, 7500] m
Collector 1 Velocity (Vc1) [100, 0, 0] m/s
Collector 2 Position (Pc2) [2000, 0, 7500] m
Collector 2 Velocity (Vc2) [100, 0, 0] m/s

Emitter Position (Pe) [10000, 10000, 0] m
Emitter Velocity (Ve) [0, 0, 0] m/s

Table 3. Transmitted signal parameters.

Parameter Value
Carrier Frequency ( fc) 1000.025 MHz

Sampling Frequency ( fs) 100 kHz
Symbol Rate (Rsym) 10000 symbol/sec

Signal-to-Noise Ratio (SNR)
(

Eb
N0

)
Variable

The first case chosen uses a signal length of N = 214 samples, a SNR of 10 dB, and a map
grid size of dm = 100 meters. Furthermore 10 CAF snapshots were computed at 10 sec-
ond intervals and then summed to provide the final surface. These parameters were chosen
because the computations involved are short enough that a large map could be realistically
generated by both algorithms and a large scale comparison made. Additionally, this case
provides a reasonable baseline because the signal length is small enough that the Hartwell
algorithm should have no difficulty and will perform perfectly fine. As shown in Figure
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16, these expectations are realized. Both algorithms peak near the correct location of the
emitter and show the expected ambiguity about the y axis due to the lead-trail collector
configuration. Significant differences can be noted, however. The Moss algorithm provides
a much smoother surface as each data point is computed independently and can take any
value. The Hartwell algorithm, by contrast, maps the CAF surface to the geographic plane
by placing the CAF magnitude values into xy bins. This binning behavior is not necessar-
ily detrimental, but in some situations it could lead to losing some valuable information.
Another observation of note from this test is that the smoothness of the Moss algorithm
means that more of the CAF energy is located away from the peak. Since the peak is what
shows the emitter’s location, and is of interest, this dispersion could make geolocation more
difficult with a greater spread in the Confidence Interval (CI).

Moss algorithm Hartwell algorithm.

Figure 16. N = 214, dm = 100, SNR = 10 dB, 10 Snapshots, Full Map.

The second test aims to see the effect of increasing the number of snapshots. These
snapshots were Hartwell’s method [5] of working around the signal length limitations of his
algorithm by spacing out collection intervals to achieve isodop and isochrone rotation with
the necessarily short collection times. In principle, this method of dividing the collection
into snapshots is not necessary with the Moss algorithm; we should be able to just integrate
straight through. However, in order to make one-to-one comparisons, and because of the
computational complexity of long signals, the Moss algorithm will also use snapshots for
these tests. Therefore, this test leaves all parameters equal to those of the first test, but
changes the number of snapshots from 10 to 30.
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As shown in Figure 17, the results are not entirely as expected. For the Hartwell al-
gorithm, the peaks are indeed much narrower as desired, but the map also becomes much
noisier. This is attributed two factors. First, Hartwell’s algorithm only computes the magni-
tude of the CAF, which is then non-coherently summed, losing any phase information. This
leads to less destructive interference occurring and the noise adding up with each snapshot.
Second, the binning characteristic already discussed creates an ’on/off’ behavior in CAF
values at given xy coordinates. After the summation, this leads to some xy coordinates hav-
ing very large values, while those right next to them may have very low values. The Moss
algorithm does not show this characteristic. The surface is smooth, without any binning,
and the surfaces are all summed coherently before taking the surface magnitude as the final
step before plotting. This seems to reduce the clutter greatly and make additional snapshots
more beneficial. This implies that the Moss algorithm would perform even better if we had
the computational power to collect straight through, without snapshotting, but verifying
this is left for future work.

Moss algorithm Hartwell algorithm

Figure 17. N = 214, dm = 100, SNR = 10 dB, 30 Snapshots, Full Map.

The third test investigates the effect of increasing the SNR to 30 dB, and also doubles the
length of the signal. Additionally, this test reduces the map size so as to concentrate on just
the area of interest. This is done both to reduce the computation time, and also because the
first two tests have already shown the large scale behavior, which mostly follows expecta-
tions. The results are shown in Figure 18. The resolution used is still relatively large, and at
this scale both algorithms perform adequately. However, it can be seen that smoothness of
the Moss algorithm again makes it easier to find the true peak of the surface and determine
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an appropriate CI for the geolocation estimate. The Hartwell algorithm peaks nearly as
close to the true emitter location as the Moss algorithm, but, there seems to be a greater
variance in the peak and multiple locations are binned into the same value. This makes it
difficult to determine the true peak.
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Figure 18. N = 215, dm = 100, SNR = 30 dB, 10 Snapshots.

The next test is an attempt to determine if the Moss algorithm is able to perform better
than the Hartwell algorithm for long duration signals. Achieving this was the primary
motivation for this work, and it is important see if it has been successful or not. As shown
previously in Figure 11, the Hartwell algorithm begins to show significant smearing and
loss of accuracy at signal lengths of 221 so a length of 222 was chosen for this test. With
signals of this length the computation time becomes a serious problem so very small map
sizes were used to make it practical.

The results of this test are shown in Figure 19. The first thing that we notice is that,
this time, the Moss algorithm is just as rough as the Hartwell algorithm. This is simply
the result of having a grid resolution on the same order as the grid size, the next test will
correct this. Beyond the roughness, it can be seen is that both algorithms create a peak
with approximately the same error. It appears that the Moss algorithm has a slightly lower
(better) variance, but this is impossible to determine from just one test at this resolution, so
no true conclusions can be drawn from this.

In order to draw a better conclusion, the test is re-done with a higher resolution of dm =

10 meters. This increases the computation time by a factor of 10, so the grid size is halved

32



0.95

1

1.05

x 10
4

0.98

1

1.02

x 10
4

0.5

1

1.5

2

2.5

x 10
5

X (meters)

X: 1.05e+04
Y: 1.02e+04
Z: 2.938e+05

Y (meters)

|C
A

F
|

Moss algorithm

0.95
1

1.05

x 10
40.98

0.99

1

1.01

1.02

x 10
4

0.5

1

1.5

2

2.5

3

x 10
5

X (meters)

X: 9500
Y: 1.01e+04
Z: 3.124e+05

Y (meters)

|C
A

F
|

Hartwell algorithm

Figure 19. N = 222, dm = 100, SNR = 30 dB, 10 Snapshots.

to bring the increased computational complexity to a factor of 4. As shown in Figure 20,
the results appear to be much better. The Hartwell algorithm’s results appear smoothed out
some and it arrives at a closer estimate for the emitter’s position. However, this may be
deceiving. The surface seems to be monotonically decreasing away from the peak, but this
could merely be a result of using such a small grid size, and the true peak may be located
off the grid. With this resolution and grid size it is impossible to tell if this is the true peak,
or just a local peak. Furthermore, even if it is the true peak, the energy is quite dispersed
over the grid, which will result in a higher variance in the maps energy. This means that the
statistical geolocation accuracy will most likely be worse if multiple runs were performed
with random noise.

The Moss algorithm, on the other hand, is able to show the true oscillating behavior
of the CAF surface, which gives more confidence that we have found the true peak. The
energy in the surface is also more concentrated near the peak—meaning that if more tests
could be completed, and statistical analysis performed, the results are more likely to be
consistent.
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Figure 20. N = 222, dm = 10, SNR = 30 dB, 10 Snapshots.

4.3 Conclusion of Results
Without the ability to perform tests with both large-scale and high resolution maps, it is
difficult to arrive at the true big-picture characteristics of the algorithm. Additionally, it is
impossible to conclusively determine the accuracy and performance without the ability to
do multiple runs of each test with random noise, and then perform statistical analysis to
truly see what the mean and variance of the detection results are. However, short of these
conclusive results, it appears that the Moss algorithm succeeds in geolocating RF signals
with equivalent, or better, accuracy than the Hartwell algorithm, as shown in Figures 16-20.
Furthermore, it is clear that the Moss algorithm provides a much better mapping resolution
than the Hartwell algorithm. This suggests both better accuracy, and an improved ability to
distinguish more subtle behaviors that would otherwise be smoothed out and missed. More
work is necessary to draw convincing conclusions as to the utility of the Moss algorithm,
but this chapter has shown that it merits further investigation. The final chapter will discuss
the further work that needs to be accomplished in order to move this work forward, and the
current thoughts on how to achieve it.
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CHAPTER 5:
Future Work

This work has demonstrated that the Moss CAFMAP algorithm is capable of geolocating
RF emitters. However, there is still a lot of work that should be done to truly complete this
study, which will have to be left for a later work due to time constraints. This section will
discuss the main aspects that require further investigation.

5.1 Reduce Complexity
In order to be practically useful, the algorithm must be able to run in less time, so that
results can be obtained in near real-time as required by real world operations. The first, and
simplest, method to improve the performance is to port the algorithm to a more suitable
programming language, such as C or Fortran. These compiled languages are much better
at handling large computations and loops, such as those present in the Moss algorithm.
MATLAB was used in this work due to its ease of use, and the availability of previous code
which could be used as a foundation. However, as an interpreted language, optimized for
linear algebra, it does not perform well with the kinds of computations required in this algo-
rithm. It is expected that such a port would provide substantial performance improvements,
even if the algorithm itself were left in its current state.

5.1.1 Adaptive Resolution
Adopting an adaptive resolution regime is another method to reduce the complexity of the
algorithm. Rather than try to geolocate the emitter in a single run it could be done in
multiple stages, where each stage adapts the grid size, grid resolution, and signal length as
appropriate until the desired accuracy is achieved. The initial stage could use a very short
signal length and large grid with low resolution to find the approximate emitter location,
and then the process can be repeated with a smaller grid, higher resolution, and longer
signal length to iteratively arrive at a better solution. This concept is very similar to the
coarse/fine method implemented by Johnson [11].
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5.1.2 Parallelization
One great advantages of modern microprocessors is their multi-core architecture. This al-
lows them to simultaneously perform multiple operations to reduce processing time. The
current CAFMAP implementation does not make use of this capability, and is a factor that
could be greatly improved. The algorithm should lend itself quite well to parallelization, as
the same computations are performed with identical data many times with very well defined
and independent changes. This has been shown true by Singh et al. as they successfully im-
plemented the standard CAF in the 49-core Maestro processor, with significant reductions
in processing time [12]. It should be fairly simple to break up the new Moss algorithm into
parallel processing streams that can be recombined at the end. For example, the processing
could be broken up either by grid locations, or by snapshots. Both ways would provide a
set of long computations that are entirely independent and could be performed by separate
processors.

5.1.3 Block Updates
In the current implementation of the Moss algorithm, the collector-emitter geometry is es-
sentially being updated with every sample. While this reflects the true reality, it is useless
in practice. At orbital velocities the collectors will be moving approximately 7.5 km/sec,
and with a representative sampling frequency of 100 kHz, that means that the collectors
will change position by 7.5 km/sec/100 kHz = 0.075 m between each sample. So TDOA, for
example, will only change by a maximum of ∆r

c ≈
0.075
3×108 = 2.5×10−10 sec between sam-

ples. This is a negligible difference, that is rounded out by the algorithm in its digital
computation anyway.

Therefore, another approach that may possibly be used to reduce the complexity, would
be to divide the collected signals into blocks of constant geometry, and only update collec-
tor positions when moving to a new block. By itself this would only simplify the algorithm
marginally, but it may make it possible to use the FFT or correlation methods to calculate
the CAF of each block. This would reduce complexity immensely, as those methods are
far more efficient than brute force calculations. More work would need to be done to prove
the feasibility of using the FFT or correlation functions however.
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5.2 Experimentally Determine Statistical Results
Once the performance is improved, it is also important to gather statistical results on the
accuracy and variations in the algorithm. It is impossible to completely characterize and
determine the usefulness of this work without having these statistics experimentally deter-
mined. This is impossible to carry out with the current implementation, due to the compu-
tational complexity and long run times, but once those issues are resolved, the characteri-
zation of the algorithm needs to be completed.

5.3 Improve Geometry
Finally, this work has used a 2-Dimensional geometry for the emitter, with linear motion, in
order to keep complexity at a minimum while performing the proof of concept for the work.
However, this geometry is only realistic in limited situations, such as aircraft performing
the collection over a small enough land area that can be accurately approximated as flat.
For more general applicability, the algorithm must be fully extended to three dimensions,
and for space applications, the collectors must follow an elliptical path for updating the
geometry. Additionally, it is desirable to allow the emitter to be mobile, as well as the
collectors, since this is often the case in real-world applications.

5.4 Conclusion
In conclusion, it is shown that the reformulated equations for TDOA and FDOA are ac-
curate, and can be used in a modified CAFMAP algorithm to account for the motion of
the collectors over time. The resulting Moss algorithm is able to geolocate RF emitters
with accuracy similar to that of the original Hartwell algorithm for shorter collection times,
and with apparent greater accuracy for long collection times. The improvement comes,
however, with the cost of high computational complexity. This is significant enough that it
must be mitigated before the new algorithm can be practically implemented, but the work
required is merited. Additionally, the approach used here, of modifying the TDOA and
FDOA equations to account for collector motion, should be generally applicable to many
other methods of geolocation that estimate TDOA and FDOA as a fundamental step. This
could lead to much broader use of these results, once the computational issues have been
solved, and improve the geolocation accuracy of multiple methods in common use today.
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APPENDIX: MATLAB Code

% This is an extension of Hartwell's CAF_MAP method and much of the

% initial code structure was taken from his work.

%

% This function defines all of the key parameters of the system,

% generates the signal vectors using Joe Johnson's sig_gen function,

% calls caf_map to generate the CAF_MAP in X and Y geographic

% coordinates, and then plots the combined result

%

% Usage: This is the initiating script, no inputs or

% outputs are required.

%

% Written by: LT Andrew Moss, Jan. 2014

% Last Modified: LT Andrew Moss December 2014

% clear all;close all;clc

close all

NUM_SNAPS = 30; % How many snapshots to take.

GAP = 10; % Gap between snapshots in seconds.

Pc1 = [0,0,7.5e3]; % Collector 1 XYZ coordinates in meters.

Vc1 = [100,0,0]; % Collector 1 velocity, [Vx,Vy,Vz] in meters/sec.

Pc2 = [2e3,0,7.5e3];% Collector 2 XYZ coordinates in meters.

Vc2 = [100,0,0]; % Collector 2 velocity, [Vx,Vy,Vz] in meters/sec.

Pe = [10000,10000,0];% Emitter XYZ Position in meters.

Ve = [0,0,0]; % Emitter velocity in meters/sec.

f0 = 1000.025e6; % Emitted carrier frequency in Hz.

fs = 100e3; % Signal Sampling frequency in Hz.

Rsym = 10e3; % Symbol rate for the generated BPSK signals.

N = 2^21; % Length of collected signals, this also determines

% integration time.

Es_No1 = 30; % Received SNR for collector 1.
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Es_No2 = 30; % Received SNR for collector 2.

dm = 100; % Resolution of the generated XY map in meteres.

% This creates the XY grid. Starts from Pe1 and makes a square to Pe2

% with a resolution of dm as specified above. Units are meters.

Pe1 = [8.5e3,8.5e3];

Pe2 = [11.5e3,11.5e3];

t_snap = N/fs; % The time covered by each snapshot in seconds.

indexX = Pe1(1):dm:Pe2(1); % X grid points

indexY = Pe1(2):dm:Pe2(2); % Y grid points

map_comb = zeros(length(indexX),length(indexY)); % initialize map.

% Break up the signals into snapshots and find the caf_map of each and

% sum the magnitudes

for ii = 1:1:NUM_SNAPS

% Update Collector 1 position.

Pc1_snap = Pc1 + ii*t_snap*Vc1 + (ii−1)*GAP*Vc1;
% Update Collector 2 position.

Pc2_snap = Pc2 + ii*t_snap*Vc2 + (ii−1)*GAP*Vc2;
% Creates the signal vectors for the current snapshot.

[Sa1, Sa2, S1_snap, S2_snap, Pcc1, Pcc2] = ...

sig_gen(Pc1_snap,Vc1,Pc2_snap,Vc2,...

Pe,Ve,f0,fs,Rsym,N,Es_No1,Es_No2);

% Call the caf_map functions to generate the CAF surface

% in the XY plane

% for the current snapshot.

[map,indexX,indexY]=caf_map(S1_snap,S2_snap,f0,...

fs,dm,Pe1,Pe2,Pc1_snap,Vc1,...

Pc2_snap,Vc2);

% Add the current snapshot to the sum of the previous

% snapshots. All snapshots will have a peak at the actual

% emitter location and will interfere both constructively

% and destructively elsewhere.

map_comb = map_comb + map;
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end

% Plotting functions that may be used if found useful.

% [tdoa_grid, fdoa_grid, PtempX,PtempY] = ...

% tdoa_fdoa_grid3d(Pc1_snap,Vc1,Pc2_snap,Vc2,Pe1,Pe2,f0,dm);

% Tau_Lo = round(min(min(tdoa_grid))*fs)−10;
% Tau_Hi = round(max(max(tdoa_grid))*fs)+10;

% Freq_Lo = (min(min(fdoa_grid))/fs)−.001;
% Freq_Hi = (max(max(fdoa_grid))/fs)+.001;

% [TDOA, FDOA, MaxAmb, Amb, TauValues,FreqValues] = ...

% caf_peak(S1_snap, S2_snap, Tau_Lo,...

% Tau_Hi, Freq_Lo, Freq_Hi, fs, 0);

% figure()

% f=mesh(TauValues/Fs,FreqValues*Fs,(abs(Amb)));

% title('CAF');

% set(f,'XData',TauValues);

% set(f,'YData',FreqValues);

% xlabel('TDOA');

% ylabel('FDOA');

% axis tight

savefile1 = 'map_comb.mat';

save(savefile1, 'map_comb');

% Plot mesh of the combined snapshots

figure()

hold on

f=mesh((abs(map_comb')));

set(f,'XData',indexX);

set(f,'YData',indexY);

title('')

xlabel('X (meters)')

ylabel('Y (meters)')

zlabel('|CAF|')

axis tight

grid on

set(gca,'FontSize',12)

set(findall(gcf,'type','text'),'FontSize',12)

function [CAF,indexX,indexY]=...
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caf_map(S1,S2,Fo,Fs,dm,Pe1,Pe2,Pc1,Vc1,Pc2,Vc2)

%**********************************************************************

% [map,PtempX,PtempY]=caf_map(S1,S2,Fo,Fs,dm,Pe1,Pe2,Pc1,Vc1,Pc2,Vc2)

% This function will calculate a CAF surface based upon input signals

% S1 & S2 and map the caf to the 2 dimensional plane given by

% Pe1 and Pe2.

% Inputs:

% S1 Signal from collector 1.

% S2 Signal from collector 2 .

% Fo Carrier Frequency of signal.

% Fs Sampling Rate .

% dm Resolution in meters .

% Pe1 Start of grid for Emitter's Position [X,Y] in meters.

% Pe2 End of grid for Emitter's Position [X,Y] in meters.

% Pc1 Position of collector 1 and beginning of snapshot [X,Y,Z].

% Vc1 Velocity Vector of collector 1 [x,y,z].

% Pc2 Position of collector 2 and beginning of snapshot [X,Y,Z].

% Vc2 Velocity Vector of collector 2 [x,y,z].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Written By: LT Andrew Moss, April 2014

% Last Modified By: LT Andrew Moss, December 2014

% *********************************************************************

c = 2.997925e8; % Speed of light in m/s.

Ts = 1/Fs; % Sampling period in sec.

N = length(S1);

% Builds the position vectors for the Emitter's Position

% Note this assumes a flat earth and the emitter is a 0m alt.

indexX = Pe1(1):dm:Pe2(1); % X grid points in meters

indexY = Pe1(2):dm:Pe2(2); % Y grid points in meters

% Get the dimensions of the map in order to go through each

% location.

Nx = length(indexX);

Ny = length(indexY);

% Initialize matrices for speed.

CAF = zeros(Nx,Ny);

TauValue = zeros(1,N);
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FDOA = zeros(1,N);

% Start going through each map location and calculated the CAF value if

% that grid were the actual location of the emitter.

for ii = 1:Nx

for jj = 1:Ny

% Directly computing A(x,y) = sum{ s1(t)s2*(t,x,y)exp(j2pi t

% f(t,x,y)) as derived in notes on 16OCT13

m = zeros(1,N);

exponent = zeros(1,N);

Pe = [indexX(ii),indexY(jj),0];

S2_conj = conj(S2);

% Loop through each element of S2 for a given map location.

for nn = 1:length(S2)

% TauValue is calculated as a function of emitter position,

% collector geometry and collector velocity. Must be

% rounded to a whole number.

% Calculate relative position vectors for each collector and

% the current map location. Update each sample to account

% for the position change of the collectors over time.

r1 = Pe − (Pc1+Vc1.*nn*Ts);

r2 = Pe − (Pc2+Vc2.*nn*Ts);

% Find TDOA.

TauValue(nn) = round((norm(r2)−norm(r1))/(c*Ts));

% Perform the shift in the collected signals to account

% for the TDOA and realign the signals. Then calculate

% the mixing function.

if TauValue(nn) >= 0 && (nn+TauValue(nn)) < N

m(nn) = S1(nn) * S2_conj(nn+TauValue(nn));

elseif (nn−TauValue(nn)) < N

m(nn) = S1(nn−TauValue(nn)) * S2_conj(nn);

end

% Calculate the FDOA from the relative position vectors.

% This are done as vectors to avoid more loops, but as with
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% TDOA the value is changing in time.

FDOA(nn) = Fo/c*(Vc2*r2'/norm(r2)−Vc1*r1'/norm(r1));

% Calculate the exponential term of the CAF.

exponent(nn) = exp(−1j*2*pi*FDOA(nn)/Fs*(nn−1));
end

% Finish calculating the CAF value for the current map position.

product = m.*exponent;

CAF(ii,jj) = sum(product);

% The following is debugging code, left in as it may be useful.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% fdoa_grid2(ii,jj) = mean(FDOA);

% tdoa_grid2(ii,jj) = mean(TauValue);

%

% T_vals = linspace(min(min(tdoa_grid2)),...

% max(max(tdoa_grid2)),length

%

% %% Just Calc the CAF and then map it via Hartwell's method

% % adds the 3rd dimensions at 0 meters in altitude

% gridP = [indexX(ii),indexY(jj),0];

%

% doppler1(ii,jj) = Fo/c * dot(Ve−Vc1, gridP−Pc1)...
% / norm(gridP − Pc1);

% doppler2(ii,jj) = Fo/c * dot(Ve−Vc2, gridP−Pc2)...
% / norm(gridP − Pc2);

%

% % Calculates the FDOA

%

% fdoa_grid(ii,jj) = doppler1(ii,jj) − doppler2(ii,jj);

%

%

% % Calculates the TDOA

%

% tdoa_grid(ii,jj) = −(norm(gridP − Pc2) −...
% norm(gridP − Pc1)) / c;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

end
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savefile1 = 'CAF.mat';

save(savefile1, 'CAF');

function [Sa1, Sa2, S1, S2, Pcc1, Pcc2] = sig_gen(Pc1,Vc1,Pc2,Vc2,...

Pe,Ve,f0,fs,Rsym,N,Es_No1,Es_No2)

% *********************************************************************

% [Sa1, Sa2, S1, S2, Pc1, Pc2]] = sig_gen;

% SIG_GEN generates BPSK signal pairs based upon user−defined param−
% eters and Cartesian emitter−collector geometries. There are

% no input arguments, since the function queries the user for

% all required inputs. The function returns four vectors:

% Sa1, Sa2, S1 & S2. These are the Analytic Signal represen−
% tations of the two generated signals, and the Real represen−
% tations of the two signals, respectively.

%

% Written by: LCDR Joe J. Johnson, USN

% Last modified: 28 June 2005 By Glenn D. Hartwell

% Modified for 3D simulations and export collectors positions

% *********************************************************************

clc;

% disp(' ');

% disp('All positions and velocites must be entered in vector format,');

% disp('e.g., [X Y Z] or [X, Y, Z] (including the brackets).');

% disp(' ');

%

% Pc1(1,:) = input...

% ('Collector 1''s POSITION Vector at time 0 (in meters)? ');

% Vc1 = input('Collector 1''s VELOCITY Vector (in m/s)? '); disp(' ');

%

% Pc2(1,:) = input...

% ('Collector 2''s POSITION Vector at time 0 (in meters)? ');

% Vc2 = input('Collector 2''s VELOCITY Vector (in m/s)? '); disp(' ');

%

% Pe(1,:) = input...

% ('Emitter''s POSITION Vector at time 0 (in meters)? ');
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% Ve = input('Emitter''s VELOCITY Vector (in m/s)? '); disp(' ');

%

% % f0 and fs are the same for BOTH collectors!

% f0 = input('Carrier Frequency (in Hz)? ');

% fs = input('Sampling Frequency (in Hz)? ');

Ts = 1/fs; % Calculates Sample Period

%

% Rsym = input('Symbol Rate (in symbols/s)? '); disp(' ');

Tsym = 1/Rsym; % Calculates Symbol Period

%

% N = input('How many samples? '); disp(' ');

%

% Es_No1 = input('Desired Es/No at Collector 1 (in dB)? ');

% Es_No1 = 10^(Es_No1/10); % Converts from dB to ratio

%

% Es_No2 = input('Desired Es/No at Collector 2 (in dB)? ');

% disp(' ');

Es_No2 = 10^(Es_No2/10); % Converts from dB to ratio

Pc1 = [Pc1; zeros(N−1, 3)]; % Initializing all the matrices makes

Pe1 = zeros(N, 3); % later computations much faster.

Pc2 = [Pc2; zeros(N−1, 3)];

Pe2 = zeros(N, 3);

t1 = zeros(1, N);

t2 = zeros(1, N);

S1 = zeros(1, N);

S2 = zeros(1, N);

A = 1; % Amplitude of Signal

c = 2.997925e8; % Speed of light in m/s

Ps = (A^2)/2; % Power of Signal

sigma1 = sqrt(Ps*Tsym/Es_No1); % Calculate Noise Amplification fac−
sigma2 = sqrt(Ps*Tsym/Es_No2); % tors using Es/No = Ps*Tsym/sigma^2

Noise1 = sigma1.*randn(N, 1); % Random Noise values for Signal 1

Noise2 = sigma2.*randn(N, 1); % Random Noise values for Signal 2

46



% Builds the position vectors for the two collectors

for index = 2 : N

Pc1(index,:) = Pc1(index − 1,:) + Ts*Vc1;

Pc2(index,:) = Pc2(index − 1,:) + Ts*Vc2;

end

% While loop determines first elements of Pe1 and t1. t1(1) is the

% time AT THE EMITTER that produces the 1st sample received at

% collector 1! Pe1(1,:) is the position of the emitter when it

% produces the 1st sample received by collector 1.

temp = inf; % Ensures while loop executes at least once

t1(1) = 0;

tempPe = Pe(1,:);

while abs(temp − t1(1)) > 1/f0

temp = t1(1);

t1(1) = −norm(Pc1(1,:) − tempPe) / c;

tempPe = Pe(1,:) + t1(1)*Ve;

end

Pe1(1,:) = tempPe;

% While loop determines first elements of Pe2 and t2. t2(1) is the

% time AT THE EMITTER that produces the 1st sample received at

% collector 2! Pe2(1,:) is the position of the emitter when it

% produces the 1st sample received by collector 2.

temp = inf; % Ensures while loop executes at least once

t2(1) = 0;

tempPe = Pe(1,:);

while abs(temp − t2(1)) > 1/f0

temp = t2(1);

t2(1) = −norm(Pc2(1,:) − tempPe) / c;

tempPe = Pe(1,:) + t2(1)*Ve;

end

Pe2(1,:) = tempPe;
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% Platform positions at middle of snapshot

Pcc1=(Pc1(N/2,:));

Pcc2=(Pc2(N/2,:));

% Determines the earliest time at the emitter for this pair of signals.

StartPoint = min(t1(1), t2(1));

% Next 2 lines determine offsets needed for signals 1 & 2 to enter the

% phase vector (P). This simply ensures proper line up so that bit

% changes occur at the right times.

SymbolIndex1 = 1 + floor(abs(t1(1) − t2(1))/Tsym) * (t1(1)>t2(1));

SymbolIndex2 = 1 + floor(abs(t1(1) − t2(1))/Tsym) * (t2(1)>t1(1));

for index = 2 : N % Builds the Pe1 and t1 vectors

temp = inf;

t1(index) = 0;

% 1st guess is that emitter will advance exactly Ts seconds.

tempPe = Pe1(1,:) + (t1(index −1) + Ts)*Ve;

% While loop iteratively determines actual time & position for

% emitter, based on instantaneous geometry.

while abs(temp − t1(index)) > 1/f0

temp = t1(index);

t1(index) = (index − 1)*Ts − norm(Pc1(index,:) − tempPe) / c;

% Due to negative times, must multiply Ve by ELAPSED time!

tempPe = Pe1(1,:) + abs(t1(1)−t1(index))*Ve;
end

Pe1(index,:) = tempPe;

end

for index = 2 : N %Builds the Pe2 and t2 vectors

temp = inf;

t2(index) = 0;

% 1st guess is that emitter will advance exactly Ts seconds.
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tempPe = Pe2(1,:) + (t2(index −1) + Ts)*Ve;

% While loop iteratively determines actual time & position for

% emitter, based on instantaneous geometry.

while abs(temp − t2(index)) > 1/f0

temp = t2(index);

t2(index) = (index − 1)*Ts − norm(Pc2(index,:) − tempPe) / c;

% Due to negative times, must multiply Ve by ELAPSED time!

tempPe = Pe2(1,:) + abs(t2(1)−t2(index))*Ve;
end

Pe2(index,:) = tempPe;

end

% Could change this seed to whatever you want; or could have user

% define it as an input. This just ensures, for simulation purposes

% that every time the program is run, the BPSK signals created will

% have the same random set of data bits.

rand('seed',5);

% Create enough random #'s to figure phase shift (data bits)

r = rand(N,1);

P = (r > 0.5)*0 + (r <= 0.5)*1; % Since BPSK, random # determines

% if phase is 0 or pi

% Building Xmitted Signal #1 vector... These represent the pieces of

% the signal that were transmitted by the emitter to arrive at

% Collector 1 at its sample intervals.

S1(1) = A*cos(2*pi*f0*t1(1) + P(SymbolIndex1)*pi) + Noise1(1);

% The if statement inside the loop changes the data bit if the time

% has advanced into the next symbol period.

for index = 2 : N

if t1(index) − StartPoint >= (SymbolIndex1) * Tsym

SymbolIndex1 = SymbolIndex1 + 1;

end
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S1(index) = A*cos(2*pi*f0*t1(index) + P(SymbolIndex1)*pi) + ...

Noise1(index);

end

Sa1 = hilbert(S1); % Calculates the ANALYTIC SIGNAL of S1. To

% compute the COMPLEX ENVELOPE, multiply Sa1

% by .*exp(−j*2*pi*f0.*t1);

% Building Xmitted Signal #2 vector... These represent the pieces of

% the signal that were transmitted by the emitter to arrive at

% Collector 2 at its sample intervals.

S2(1) = A*cos(2*pi*f0*t2(1) + P(SymbolIndex2)*pi) + Noise2(1);

% The if statement inside the loop changes the data bit if the time

% has advanced into the next symbol period.

for index = 2 : N

if t2(index) − StartPoint >= (SymbolIndex2) * Tsym

SymbolIndex2 = SymbolIndex2 + 1;

end

S2(index) = A*cos(2*pi*f0*t2(index) + P(SymbolIndex2)*pi) + ...

Noise2(index);

end

Sa2 = hilbert(S2); % Calculates the ANALYTIC SIGNAL of S2. To

% compute the COMPLEX ENVELOPE, multiply Sa2

% by .*exp(−j*2*pi*f0.*t2);

% This function call simply calculates and displays the expected TDOAs

% and FDOAs at the Beginning and End of the collection time.

% tdoa_fdoa(f0,Pe1(1,:),Pe1(N,:),Pe2(1,:),Pe2(N,:),Ve,Pc1(1,:),...

% Pc1(N,:),Vc1,Pc2(1,:),Pc2(N,:),Vc
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